Limit of Sequences

- 1. Show that y^n and ny^n both tend to zero as n tends to infinity if 0 < y < 1. Show that $(1 + a)^n < (1 - na)^{-1}$ is n is a positive integer, a > 0 and na < 1, and then prove that, if 0 < x < 1, $(1 + x^n)^n$ tends to 1 as n tends to infinity.
- 2. The numbers of a sequence $u_0, u_1, u_2, ...$ are given by the relation $u_n - (k + k^{-1})u_{n-1} + u_{n-2} = 0$ ($n \ge 2$, $k \ne 1$). Prove that if $u_0 = 1$ and k > 1, then the unique value of u such that u_n tends to a limit as

$$n \rightarrow \infty$$
 is $\frac{1}{k}$.

3. If a > 0 and $0 < x_1 < b$, show that the sequence $\{x_n\}$ defined by the formula $x_n = \sqrt{\frac{ab^2 + x_n^2}{a+1}}$ is an increasing bounded sequence and find its limit.

4. The sequence $\{x_n\}$ is defined by the relation $x_{n+1} = x_n^2 - 2x_n + 2$ (n > 1). Investigate the behaviour of x_n in the cases (a) $1 < x_1 < 2$ (b) $x_1 = 2$ (c) $x_1 > 2$.

5. Given that $a_0 = a_1 \sin^2 \phi = 2 \cos \phi$ and that $a_n - 2a_{n+1} + a_{n+2} \sin^2 \phi = 0$. Find an expression for a_1 and show that $\sum_{r=1}^n a_r = \left(\frac{1}{1 - \cos \phi}\right)^n - \left(\frac{1}{1 + \cos \phi}\right)^n$.

6. A sequence is defined by the formula $u_{n+1} = \frac{6u_n^2 + 6}{u_n^2 + 11}$, n = 0, 1, 2, ... and by the value of the initial term u_0 . Prove that if u_n converges to a limit a, then a is either 1, 2, 3. Show that, if $u_0 > 3$, then (i) $3 < u_{n+1} < u_n$ (ii) $\frac{u_{n+1} - 3}{u_n - 3} < \frac{9}{10}$ and show that, when $u_0 > 3$, then $u_n \rightarrow 3$ as $n \rightarrow \infty$.

7. If
$$\{x_n\}$$
 is defined by $x_0 = x$, $x_{n+1} = \frac{x_n}{1 + \sqrt{1 + x_n^2}}$ $(n = 0, 1, 2, ...)$ and a_n, b_n are defined by

$$a_n = 2^n x_n$$
, $b_n = \frac{2^n x_n}{\sqrt{1 + x_n^2}}$. Prove that $\{a_n\}, \{b_n\}$ both converge to the same limit

- 8. If $0 < a_1 < 3$ and $a_{n+1} = \frac{12}{1+a_n}$, show that the sequences $\{a_{2n+1}\}$ and $\{a_{2n}\}$ are respectively increasing and decreasing monotonically. Prove that the sequence a_n converges to the limit 3.
- 9. Positive numbers $u_1, u_2, ...$ are defined by $u_1 = 3$, $u_{n+1} = \sqrt{u_n + 5}$, (n = 0, 1, 2, ...)

Prove that as $n \to \infty$, u_n tends to a limit a. Prove also that $0 < u_{2n+1} - a < \frac{1}{30^n} (u_1 - a)$.

- **10.** Points $P_0(x_0, y_0)$, $P_1(x_1, y_1)$, ..., $P_n(x_n, y_n)$ are connected by the following relations : $x_{n+1} = 2x_n + 3y_n$, $y_{n+1} = x_n + 2y_n$, $x_0 = 1$, $y_0 = 0$.
 - (i) Find a if the items of the sequence $\{z_n\} = \{x_n + ay_n\}$ forms a geometric sequence.
 - (ii) Find the limit of the gradient of the straight line OP_n when $n \rightarrow \infty$. (You may assume that the limit exists.)
- **11.** The sequence a_1, a_2, a_3, \dots is defined as $a_1 = 3$, $a_{n+1} = \frac{a_n^2 + 5}{2a_n}$, n > 0.

Prove that
$$0 < a_{n+1} - \sqrt{5} < \frac{(3 - \sqrt{5})^{2^n}}{(2\sqrt{5})^{2^n - 1}} < 6 \times (\frac{2}{11})^{2^n}$$
 and find $\lim_{n \to \infty} a_n$.

- 12. A sequence $\{r_n\}$ is defined as follows, $r_0 > 0$, $r_{n+1} + \frac{1}{r_n} = 2A$, A > 0. Show that the condition that is necessary for the convergence of r_n is that $A \ge 1$. Is the condition that $A \ge 1$ sufficient for the convergence of r_n ?
- **13.** Show that $\left\{\sin\frac{n\pi}{5}\right\}$ is divergent.
- 14. Show that $\left\{1+\frac{1}{3}+\ldots+\frac{1}{2n-1}\right\}$ is divergent.
- 15. Let $\{a_n\}$ be a sequence of positive numbers. Define $b_n = (a_1 a_2 \dots a_n)^{1/n}$ for n > 0. If $\lim_{n \to \infty} a_n = \alpha$, show that $\lim_{n \to \infty} b_n = \alpha$. Hence show that if $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \alpha$, then $\lim_{n \to \infty} \sqrt[n]{a_n} = \alpha$. Show $\lim_{n \to \infty} \frac{1}{n} (n!)^{1/n} = \lim_{n \to \infty} n^{1/n} = 1$, if it is given that $\lim_{n \to \infty} (1 + \frac{1}{n})^n = e$. 16. If $x_1 = h$, $x_{n+1} = x_n^2 + k$, where $0 < k < \frac{1}{4}$ and h lies between the roots a, b of
- 4 $x^2 - x + k = 0$. Prove that $a < x_{n+1} < x_n < h$ and determine the limit of x_n .
- **17.** Define a sequence of numbers x_1, x_2, \dots by $x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$, $a \ge 0$.

Show that $\sqrt{a} < x_n < x_{n-1} < ... < x_0$, provided that x_0 is positive and $x_0 > \sqrt{a}$. Find the limit of $\{x_n\}$. Does $\{x_n\}$ converge if a < 0?

18. Given two real numbers x_1 and x_2 . Let $x_n = \frac{x_{n-1} + x_{n-2}}{2}$, n > 2. Find the limit of the sequence x_n as n tends to infinity.

19. If
$$0 < x < \frac{\pi}{2}$$
, using the fact that $\cos\frac{x}{2}\cos\frac{x}{2^2}...\cos\frac{x}{2^n} = \frac{\sin x}{2^n \sin\left(\frac{x}{2^n}\right)}$, find $\lim_{n \to \infty} \cos\frac{x}{2}\cos\frac{x}{2^2}...\cos\frac{x}{2^n}$.

 $\frac{\sqrt{\mu^2 - \lambda^2}}{\cos^{-1}\left(\frac{\lambda}{-1}\right)} \quad .$

Let $\ \mu>\lambda>0$, the sequences $\ \{x_n\}$, $\{y_n\}$ $\$ are defined by

$$x_1 = \lambda$$
, $x_2 = \frac{x_1 + y_1}{2}$,..., $x_n = \frac{x_{n-1} + y_{n-1}}{2}$, $y_1 = \mu$, $y_2 = \sqrt{x_2 y_1}$,..., $y_n = \sqrt{x_n y_{n-1}}$,

putting $\lambda = \mu \cos x$, show that the two sequences has the same limit

20. Prove that n is a positive integer, then $(\sqrt{3}+1)^n = a_n\sqrt{3} + b_n$ for unique integer a_n , b_n . Further, prove that

- (a) $a_{n+2} = 2(a_{n+1} + a_n), \quad b_{n+2} = 2(b_{n+1} + b_n);$
- **(b)** $(\sqrt{3}-1)^n = (-1)^{n-1} (a_n \sqrt{3} b_n)$;
- (c) $3a_n^2 b_n^2 = (-1)^{n-1}2^n$;
- (d) $\lim_{n\to\infty}\frac{b_n}{a_n}=\sqrt{3}$.

21. For any sequence $\{a_n\}$ of real number, it is known that if $a_n \neq 0$, $\lim_{n \to \infty} a_n = 0$, then $\lim_{n \to \infty} \frac{a_n}{\sin a_n} = 1$

- and $\lim_{n\to\infty} a_{2n} = 0$.
- (a) Let $P_n = \cos \frac{x}{2} \cos \frac{x}{2^2} \dots \cos \frac{x}{2^n}$, where $0 < x < \frac{\pi}{2}$. Evaluate $\lim_{x \to \pi/2} (\lim_{n \to \infty} P_n)$.
- (b) Show that there exists no real number x such that $\cos nx$ tends to zero as n tends to infinity.
- (c) Consider the differences of $\sin (n+2) x$ and $\sin (n+1)x$, hence prove that $\limsup_{n \to \infty} \sin nx = 0$ if and only if $x = m\pi$ for some integer m.
- **22.** Let x be a non-zero real number greater than -1. Prove by induction that for any positive integer n greater than 1, $(1 + x)^n > 1 + nx$.
 - Let t be any fixed positive number. Consider the sequence $a_n = \sqrt[n]{t}$
 - (a) Let t > 1. Show that $\sqrt[n]{t} > 1$.
 - (b) Putting $\sqrt[n]{t} = 1 + x_n$ and using (a) or otherwise, show that $1 < \sqrt[n]{t} < 1 + \frac{t-1}{n}$ for n > 2.

Hence show that for t > 1, $\lim_{n \to \infty} a_n = 1$.